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Abstract

The jet engine is an example of a complex system that periodically requires repair or restoration. This paper
discusses how the Weibull process, a non-homogenous Poisson process, can be used as a new approach in
modeling jet engine life. The Weibull process can be a very useful tool in modeling repairable systems. The
removal characteristics are estimated by collecting actual field data based on the engine age and operating
environment. The process parameters are estimated using methodology that is based on data generated from
multiple systems. This analysis includes an example of a jet engine application illustrating how the model
predictions compare to actual events. The overall capability of the model is measured by examining both data
fit and forecasting accuracy. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the days of deregulation, the aviation industry has considered many methods, techniques, and
procedures to reduce operational costs. A significant portion of these operational costs is the resource
allocated to jet engine repairs. In order to effectively allocate these resources, the industry needs to be
able to accurately forecast engine removals. The jet engine has many failure modes that can cause the
removal characteristics to have a substantial amount of variation in the expected time-on-wing (TOW)
causing inaccuracies in the forecast. This paper focuses on the development of a forecasting
methodology based on actual field data utilizing the Weibull process.

As noted by Ascher and Feingold (1984), Crow (1990), Love and Guo (1993) and Rigdon and Basu
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(1989), very little literature has been published on the reliability of repairable systems. Typically, the
reliability literature has been focused on non-repairable reliability utilizing the “renewal theory”. The
ordinary renewal process, being the simplest possible, is represented by a system composed of only one
component. The process begins by placing one component into operation, then, when it fails, it is
replaced by another new component and the system is repaired to a “same-as-new” condition (Ascher
& Feingold, 1984). This type of process does not change as the system ages and is modeled by a
homogenous Poisson process (HPP). The HPP system is neither improving nor wearing out with age
and has a constant failure rate.

However, in complex machinery such as a jet engine, the systems are generally not replaced but are
repaired when they fail. In this case, the usual non-repairable methodologies are simply not appropriate
for repairable systems and the renewal process should not be used since the required refurbishment will
typically not achieve a “same-as-new” status (Crow, 1993). The general procedure used to estimate this
complicated failure process is by modeling through the use of a simpler failure process that would still
provide practical results. The model typically used for this type of repairable system analysis is a non-
homogenous Poisson process (NHPP) (Crow, 1993; Rigdon & Basu, 1989). Modeling system
deterioration or system growth requires the use of an NHPP system that could improve or deteriorate
with system age. In fact, in the reliability analysis of repairable systems the major interest is in the
probability of system failure as a function of system age. The NHPP has a very important characteristic
in which the intensity function u(¢) depends on cumulative system operating time, “global time”, and not
necessarily on the previous time of the most recent failure “local time” (Ascher & Feingold, 1984).

The Weibull process has been referred to by many different terms such as the Power Law process,
Weibull restoration process, NHPP with Weibull intensity function, Weibull Poisson process and more
recently as the Power Law NHPP. In this paper the term Weibull process is used based on its more
frequent use in the existing literature.

2. Jet engine characteristics

The jet engine represents the leading edge of technology, advanced manufacturing, quality control,
design evaluation and extensive testing. This machinery, with its new hardware and systems can achieve
very high standards of reliability. The uncertainty of an engine failure or removal is dependent on a
number of external and internal factors (Moss, 1991):

component-specific factors (design, manufacturing);

operational factors (pressure, temperature);

environmental factors (ambient conditions, temperature, humidity);
maintenance factors (servicing frequency, overhaul strategy).

After the engines have flown, typically 3—4 years before removal from the aircraft, the hardware will
undergo wear, fretting, fatigue, erosion, corrosion, distortion and other forms of distress. Some of these
deterioration factors, if not refurbished properly, can limit the ability of the engine to stay on-wing
during its second and subsequent installations (Kleinert & Gregg, 1990; Lewis, 1987). Upon replace-
ment, the engine is sent to a repair/overhaul facility. When the cause for removal requires penetration
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Fig. 1. TOW deterioration (Source: Kleinert, 1990).

into a module (standardized breakdown of the engine into workable sections) then it is classified as a
shop visit (SV).

It is at this point that different maintenance philosophies and initial engine designs produce various
levels of restored reliability. With good workscope planning and shop methods, an engine can be
restored and achieve a subsequent TOW of approximately 70% of first run (new) capability. However,
in many cases the TOW will deteriorate to as low as 50% of first run capability as the engine ages
(Kleinert, 1990) (see Fig. 1).

The types of performance deterioration for turbine jet engines are (Diakunchak, 1992):

e recoverable with cleaning/washing (accumulation dirt, dust, pollen, particles in gas path, etc.);

e non-recoverable with cleaning/washing (deposits remain after cleaning/wash, flow path damage,
erosion, corrosion, etc.);

e permanent, not recoverable after refurbishment (as closely to “as new” but loss due to eccentricity in
clearances, increase leakage paths, surface roughness, distortion in platforms, etc.).

These factors account for the inability to restore the reliability of a jet engine as it ages resulting in a
condition not “same-as-new”. Love and Guo (1993) define this condition as imperfect repair.

Another characteristic that emerges is the potential for reliability growth in a newly developed engine
program as proposed by Duane (1964). This concept was originally based on the “learning curve” theory
developed by Wright (1936). In practically every new engine development program, the reliability tends
to improve during design, development, testing and actual use. This is due to the continuing engineering
effort to improve the design, including manufacture and operation of the hardware. This process is
typified by the development cycle based on fixing or modifying the design as new information is gained
and knowledge from prior testing (test—fix—test—fix process) is assessed. These growth models are very
useful in predicting the future reliability or failure rates (Lewis, 1987; Nelson, 1990; O’Connor, 1991).

3. Weibull process as a model for repairable systems

In terms of a repairable system, the constant intensity (another term for instantaneous failure rate),
represented by A At where A is the constant failure rate, implies that there is no improvement or wearout
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Fig. 2. Superposition of K systems (Source: Crow, 1993).

with age, characterized as the HPP. The NHPP is a generalization of the HPP that allows for a change in

the intensity as a function of system age . In this case, the AAr is replaced by u(f)Ar which is the

approximate probability that a failure will occur between age ¢ and ¢ + At of the system (Crow, 1993).
The Weibull process is the NHPP with an intensity function of the form:

u(®) = ABP1 fort >0 (1)

where A > 0, B > 0, ¢ is the system’s age and u(?) is of the same form as the failure rate for a Weibull
distribution. However, as noted by Crow, the Weibull distribution terminology, estimation and other
statistical procedures do not apply to this NHPP process. When 8 > 1 the intensity function is increasing
(representing system deterioration) and B <1 implies a decreasing function (representing system
improvement). The NHPP reverts to an HPP when 8 =1 when the intensity function is equal to a
constant A.

As Crow pointed out, when analyzing complex repairable systems, the failure data are collected from
the field and is generated by multiple copies of the system operated over different time periods. One
approach in modeling is to take the number of different systems k&, each with an operating time of at least
T and pool the behavior. The time period, in this case, would be represented as (0,7'). It must be assumed
that each system is treated as a copy and be representative of the same population. This method can then
be adapted for multiple system behavior by superpositioning the failure times for the k copies onto a
single time line (Crow, 1993) (see Fig. 2).

This allows, for the superposition system, in which a failure is noted each time any one of the k
systems fails, the intensity function u"(#) of the system is represented by (Crow, 1993):

u () = ku(t) = kABP™ for0<r<T. )
In this case, the u"(f) would have a scale parameter A* = kA but with the same shape parameter of 8. The

same procedures used for estimating parameters for a single system can be applied to the superposition
intensity function u*(f) (Crow, 1993).
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4. Estimation of the intensity function — time truncated data

For the superposition system where data are collected over a specified time interval, the analysis is
called time truncated. For a time truncated analysis, the maximum likelihood (ML) estimates of the
intensity function is given by (Crow, 1993):

Q)= BT fort> 0. 3)

In the case where there are k systems with N total failures, N is calculated as:
N=>N, )

and for each of the k systems, the failures are denoted as X;; where i represented the number of failures in
a given system, then it follows that the MLE can be represented for the parameters (A~ and ) as:

<. N
= 5)
and
A N
B=—r" (©6)
! T
> >ul |
qg=1 i=1 Xi
where the MLE for the intensity functions for each system could be represented by:
A A 1.
a0 = Ap = "o @
and as previously noted, A" = kA, then:
“ N
A= —. ®)
kTP

5. A jet engine application

The engine removal data was obtained from two different airline databases over a period of years with
a substantial sample size of removals. (Note: due to proprietary reasons the data have been masked.)
They are referred to as Airline “A” and Airline “B” to maintain the confidentiality of the operators
involved. In choosing these two airlines, different operating environments were selected. The database
includes key information such as time since new (TSN), time since last shop visit (TSSV or TOW),
engine delivery and removal dates (Event). All of the historical data were used to develop the model,
while a more recent update for the following 27 months of the airline’s operation was used to evaluate
the effectiveness of this forecasting methodology. All the analysis regarding this application utilized
Microsoft Excel® for parameter estimation and ProModel® for simulation design.

The model utilized the Weibull process methodology discussed previously and the analysis was
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Table 1
Sample data for k = 25 jet engines operating for 7 = 550 flying hours
Engine # Cuml. failure time Total failures
1 150 407 526 3
2 291 439 2
3 93 179 357 547 4
4 53 203 275 395 4
5 2 188 265 364 4
6 65 250 370 550 4
7 183 290 545 3
8 144 338 523 3
9 223 531 2
10 197 367 2
11 187 215 357 3
12 197 356 2
13 213 370 2
14 171 332 539 3
15 197 312 435 3
16 200 312 2
17 262 509 2
18 255 395 2
19 286 452 2
20 206 383 479 3
21 179 444 2
22 232 488 2
23 165 417 2
24 155 373 2
25 203 292 469 3

divided into the following key steps:

Year of delivery separation
Parameter estimation
Seasonal effect

Simulation design

5.1. Year of delivery separation

The NHPP process was constructed to represent the engine removal process of sequential replacement
by use of a Weibull power function. First, the removals were separated into years of delivery to account
for design improvements as depicted previously by the Duane growth models. Each of these
subpopulations was analyzed separately and the start times were indexed to begin at the same time (¢t =
0). The initial or “first year of delivery” intensity function was constructed analyzing only removals
occurring during a specified window of time (7 = 550). In this case, the time truncated MLEs were used
to estimate the parameters. Table 1 shows the field data collected.
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Fig. 3. Intensity function — first year of delivery.

5.2. Parameter estimation

Considering Eqs. (5) and (6), the estimated value for the parameters in the superposition intensity
function was as follows:

A

A" =0.0005167 and B =1.355
where
(r) = 0.0005167 X 1.355 x (°3%

represents the intensity function assigned to all jet engines delivered during the first year of operation
(see Fig. 3).

The above intensity function can also be displayed as the probability of completing a mission (TSSV)
based on the age (TSN) of the engine (see Fig. 4).

This same methodology was used to determine subsequent “years of delivery”. Unfortunately, after

Airline A: NHPP
(Year 1)
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~

Fig. 4. Mission probability (TSSV) with respect to engine age (TSN).
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the first 3 years of deliveries, the amount of data available for analysis was insufficient to determine the
values of the functional parameters. In the case of latter years (three or more), only a few engines had
three or more shop visits, which did not accurately model sequential replacements (counting). This is an
unfortunate problem associated with new engine programs. To obtain sufficient number of shop visits
would take another decade of data collection. The resulting intensity function describing this situation
deteriorated much too rapidly (see Fig. 5).

The above function indicates that an engine would deteriorate to less than a 10% mission probability
by 125 time-since-shop-visit (TSSV) and 250 time-since-new (TSN) that was not at all reflective of
actual results.

Since data were not available beyond the first two years of delivery the following steps were taken in
order to construct a reasonable intensity function. The third year, due to its similarity to the second, was
assigned the same parametric values. For years 4 and higher, a series of estimated TSSVs were deter-
mined based on knowledge of the engine and the expected mature values. The calculations used to
establish the projected TSSV curve are shown in Table 2 and the resulting intensity function is displayed
in Fig. 6.

5.3. Simulation design

The basic simulation design assumes that the Weibull process could be used to determine the TSSV

Table 2
Estimated mature engine performance

SV#
1 2 3 4 5 6 7 8
TSSV 228 183 171 166 160 155 151 147

TSN (Cuml) 228 411 582 748 908 1063 1214 1361
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Fig. 6. Intensity function — mature engine.

flying hours resulting in a jet engine removal. The basic model design considers a number of factors as
illustrated in Fig. 7.

The intensity function established for the early years, along with the mature expectations of the engine
program were incorporated into the model. Fig. 8 illustrates the logic used in the model to determine the
removal time (Event) of an engine while taking into consideration factors such as seasonal impact,
spares influence, infant mortality and mandated removals (life limited hardware).

5.4. Seasonal effect

A goal of the model was to forecast the removals on a monthly basis; therefore the potential of
seasonal effects was investigated. The outside ambient temperature has an impact on the engine’s
exhaust gas temperature (EGT). Typically, as the outside temperature increases, so does the EGT and
vice versa. “High EGT” is often a cause for engine removals. For key airports, the Average Daily
Maximum (ADM) were recorded on a monthly basis within a typical year to track ambient temperatures.

1stYear Overhaul 2nd Year
Delivered Delivered
1]
sy Forecast
* Sv=0 i TSSV sv-1 B Removals
e m TSH _9 m u u u by Month
Initialize . for12
CTime Years
ID
sV
TSSV
TSH
CTime

Fig. 7. Simulation design.
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The seasonal effect was placed into the simulation model to reflect the change in temperature during
different months of the year. The adjustment factor was determined for each month and applied to the
TSSV of the engine flying. The seasonal impact was used to adjust the TSSV value calculated from the
intensity function for a given jet engine. From a modeling aspect, the influence of ADM temperature was
used in the simulations by calculating a ratio for each month and weighting this ratio with respect to
TSSV. Through this method, the seasonality was considered as to how it influenced the life of a jet
engine within the simulation phase.
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Table 3
Forecast based on seasonal factors versus actual removals
Model Airline A Airline B

MSE MAD MSE MAD
No seasonal effect 5.6 1.8 2.2% 1.1
1.25% Seasonal weight 53 1.7 24 1.2
2.50% Seasonal weight 5.3¢ 1.6 2.5 1.2

* Best fit based on historical data.

6. Measurement of fit and overall accuracy

Since a seasonal effect was considered, a number of simulations were completed to determine which
seasonal factors “best fit” the actual removal events. To determine “best fit” the forecasted results were
compared to actual removals over the same time period. Mean Squared Error (MSE) and Mean Absolute
Deviation (MAD) were used as a measurement of fit. Table 3 lists their respective MSE and MAD
values.

After determining which models seemed to fit the “best”, the next step was to compare the model’s
forecast to actual results. In this case, an analysis was made for the “best fit” models by comparing their
forecast to actual removals over an additional 27-month period. By chance, each airline had a different
removal trend over this time period. Airline A’s removal pattern flattened off from the prior months’ rate
of increase compared to Airline B’s removal pattern which continued at a steady rate of increase.

To measure overall accuracy of the various models, the differences between the quantity of removals
was calculated — Cumulative Absolute Deviation (CAD):

CAD = CFR — CAR )

where CFR = Cumulative Forecasted Removals and CAR = Cumulative Actual Removals.
In addition, another measurement that penalized a system for these continued deviations was also

NHPP - 2.50% Seasonal Wgt.
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Fig. 9. Model fit to cumulative data.
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Table 4

Model accuracy

Best model Airline A Airline B Overall model accuracy (%)
CAD % CAD %

NHPP 3Sv 1 34 SV 19 10

considered — Cumulative Mean Square Error (CMSE):

> (CAR, — CFR,y’
CSME = =L . (10)

n

Fig. 9 compares how one models forecast to actual removals for the 27-month period. During the next 27
months, Airline A had 292 shop visits while Airline B had 184 shop visits. The final result of the
forecasted removal versus actual removals by each airline is shown in Table 4.

7. Conclusions

The Weibull process quite accurately predicted the SV outcome to within 1% for Airline A. However,
its ability to predict the outcome of Airline B was less accurate. In the latter case, it seems that the
significant number of mandated removals distorted the “counting process”. In many situations, the
mandated removals would result in an engine being prematurely removed due to a cycle-limited part
versus removals due to engine deterioration or part failure. These events resulted in a TSSV that was
underestimated, creating a higher than expected number of removals.

To obtain sufficient amount of data in jet engines would require five or more replacements and
possibly take as long as 15 or more years. A key limitation of this methodology therefore is its sensitivity
to the amount of sequential data required to calculate a usable intensity function. Since the average
economical lifetime of an engine being about 20 years, the usefulness of these data is limited in the early
years of a program. The utility function is clearly dependent on the level of knowledge of the individual
involved in predicting TSSVs for subsequent removals. When the data are collected in the early stages of
the engine program, and the knowledge base of the company is established, this could be an extremely
effective forecasting tool. This is especially true when considerations are made for engine design.
Derivatives for newer jet engine models will typically take on similar reliability characteristics.

This methodology, as currently applied for Airline B cannot account for all problems, such as the
mandated removals or other interfering events that distort the “counting” process. Future research should
investigate methodologies that could account for this distortion of the counting process. This method
must be capable of estimating parametric values that could more accurately model the Weibull process.
Unfortunately, this would limit an airline’s ability to use this forecasting methodology if flying very
short flight lengths otherwise the mandated removals become a very small percent of removals.

The Weibull process can be a very effective forecasting tool due to its ease of development and
application. The Weibull process has considerable potential as a forecasting tool based on the results
shown above. Its ability to forecast to within even 5% could save an airline substantially in the cost of
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spare engines that are typically needed for protection due to current forecasting techniques which have
much higher forecasting errors. This, in itself, would be reason enough for its use.
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